Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Crit Care Explor ; 4(12): e0800, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2313821

ABSTRACT

COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88-0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

2.
Sci Rep ; 13(1): 5145, 2023 03 29.
Article in English | MEDLINE | ID: covidwho-2251577

ABSTRACT

The novel coronavirus pandemic continues to cause significant morbidity and mortality around the world. Diverse clinical presentations prompted numerous attempts to predict disease severity to improve care and patient outcomes. Equally important is understanding the mechanisms underlying such divergent disease outcomes. Multivariate modeling was used here to define the most distinctive features that separate COVID-19 from healthy controls and severe from moderate disease. Using discriminant analysis and binary logistic regression models we could distinguish between severe disease, moderate disease, and control with rates of correct classifications ranging from 71 to 100%. The distinction of severe and moderate disease was most reliant on the depletion of natural killer cells and activated class-switched memory B cells, increased frequency of neutrophils, and decreased expression of the activation marker HLA-DR on monocytes in patients with severe disease. An increased frequency of activated class-switched memory B cells and activated neutrophils was seen in moderate compared to severe disease and control. Our results suggest that natural killer cells, activated class-switched memory B cells, and activated neutrophils are important for protection against severe disease. We show that binary logistic regression was superior to discriminant analysis by attaining higher rates of correct classification based on immune profiles. We discuss the utility of these multivariate techniques in biomedical sciences, contrast their mathematical basis and limitations, and propose strategies to overcome such limitations.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Neutrophils , Patient Acuity , HLA-DR Antigens , Severity of Illness Index
3.
Critical care explorations ; 4(12), 2022.
Article in English | EuropePMC | ID: covidwho-2147185

ABSTRACT

OBJECTIVES: COVID-19 is a heterogenous disease. Biomarker-based approaches may identify patients at risk for severe disease, who may be more likely to benefit from specific therapies. Our objective was to identify and validate a plasma protein signature for severe COVID-19. DESIGN: Prospective observational cohort study. SETTING: Two hospitals in the United States. PATIENTS: One hundred sixty-seven hospitalized adults with COVID-19. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: We measured 713 plasma proteins in 167 hospitalized patients with COVID-19 using a high-throughput platform. We classified patients as nonsevere versus severe COVID-19, defined as the need for high-flow nasal cannula, mechanical ventilation, extracorporeal membrane oxygenation, or death, at study entry and in 7-day intervals thereafter. We compared proteins measured at baseline between these two groups by logistic regression adjusting for age, sex, symptom duration, and comorbidities. We used lead proteins from dysregulated pathways as inputs for elastic net logistic regression to identify a parsimonious signature of severe disease and validated this signature in an external COVID-19 dataset. We tested whether the association between corticosteroid use and mortality varied by protein signature. One hundred ninety-four proteins were associated with severe COVID-19 at the time of hospital admission. Pathway analysis identified multiple pathways associated with inflammatory response and tissue repair programs. Elastic net logistic regression yielded a 14-protein signature that discriminated 90-day mortality in an external cohort with an area under the receiver-operator characteristic curve of 0.92 (95% CI, 0.88–0.95). Classifying patients based on the predicted risk from the signature identified a heterogeneous response to treatment with corticosteroids (p = 0.006). CONCLUSIONS: Inpatients with COVID-19 express heterogeneous patterns of plasma proteins. We propose a 14-protein signature of disease severity that may have value in developing precision medicine approaches for COVID-19 pneumonia.

4.
Elife ; 112022 03 11.
Article in English | MEDLINE | ID: covidwho-1742931

ABSTRACT

Background: Risk of severe COVID-19 increases with age, is greater in males, and is associated with lymphopenia, but not with higher burden of SARS-CoV-2. It is unknown whether effects of age and sex on abundance of specific lymphoid subsets explain these correlations. Methods: Multiple regression was used to determine the relationship between abundance of specific blood lymphoid cell types, age, sex, requirement for hospitalization, duration of hospitalization, and elevation of blood markers of systemic inflammation, in adults hospitalized for severe COVID-19 (n = 40), treated for COVID-19 as outpatients (n = 51), and in uninfected controls (n = 86), as well as in children with COVID-19 (n = 19), recovering from COVID-19 (n = 14), MIS-C (n = 11), recovering from MIS-C (n = 7), and pediatric controls (n = 17). Results: This observational study found that the abundance of innate lymphoid cells (ILCs) decreases more than 7-fold over the human lifespan - T cell subsets decrease less than 2-fold - and is lower in males than in females. After accounting for effects of age and sex, ILCs, but not T cells, were lower in adults hospitalized with COVID-19, independent of lymphopenia. Among SARS-CoV-2-infected adults, the abundance of ILCs, but not of T cells, correlated inversely with odds and duration of hospitalization, and with severity of inflammation. ILCs were also uniquely decreased in pediatric COVID-19 and the numbers of these cells did not recover during follow-up. In contrast, children with MIS-C had depletion of both ILCs and T cells, and both cell types increased during follow-up. In both pediatric COVID-19 and MIS-C, ILC abundance correlated inversely with inflammation. Blood ILC mRNA and phenotype tracked closely with ILCs from lung. Importantly, blood ILCs produced amphiregulin, a protein implicated in disease tolerance and tissue homeostasis. Among controls, the percentage of ILCs that produced amphiregulin was higher in females than in males, and people hospitalized with COVID-19 had a lower percentage of ILCs that produced amphiregulin than did controls. Conclusions: These results suggest that, by promoting disease tolerance, homeostatic ILCs decrease morbidity and mortality associated with SARS-CoV-2 infection, and that lower ILC abundance contributes to increased COVID-19 severity with age and in males. Funding: This work was supported in part by the Massachusetts Consortium for Pathogen Readiness and NIH grants R37AI147868, R01AI148784, F30HD100110, 5K08HL143183.


Subject(s)
COVID-19 , Lymphopenia , Amphiregulin , COVID-19/complications , Child , Female , Humans , Immunity, Innate , Inflammation , Male , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , T-Lymphocyte Subsets
5.
J Infect Dis ; 226(3): 463-473, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1672211

ABSTRACT

Some risk factors for severe coronavirus disease 2019 (COVID-19) have been identified, including age, race, and obesity. However, 20%-50% of severe cases occur in the absence of these factors. Cytomegalovirus (CMV) is a herpesvirus that infects about 50% of all individuals worldwide and is among the most significant nongenetic determinants of immune system. We hypothesized that latent CMV infection might influence the severity of COVID-19. Our analyses demonstrate that CMV seropositivity is associated with more than twice the risk of hospitalization due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immune profiling of blood and CMV DNA quantitative polymerase chain reaction in a subset of patients for whom respiratory tract samples were available revealed altered T-cell activation profiles in absence of extensive CMV replication in the upper respiratory tract. These data suggest a potential role for CMV-driven immune perturbations in affecting the outcome of SARS-CoV-2 infection and may have implications for the discrepancies in COVID-19 severity between different human populations.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Latent Infection , Cytomegalovirus , Hospitalization , Humans , SARS-CoV-2
6.
Nat Med ; 27(11): 1990-2001, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526094

ABSTRACT

SARS-CoV-2 messenger RNA vaccination in healthy individuals generates immune protection against COVID-19. However, little is known about SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses longitudinally in patients with multiple sclerosis (MS) on anti-CD20 antibody monotherapy (n = 20) compared with healthy controls (n = 10) after BNT162b2 or mRNA-1273 mRNA vaccination. Treatment with anti-CD20 monoclonal antibody (aCD20) significantly reduced spike-specific and receptor-binding domain (RBD)-specific antibody and memory B cell responses in most patients, an effect ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. By contrast, all patients with MS treated with aCD20 generated antigen-specific CD4 and CD8 T cell responses after vaccination. Treatment with aCD20 skewed responses, compromising circulating follicular helper T (TFH) cell responses and augmenting CD8 T cell induction, while preserving type 1 helper T (TH1) cell priming. Patients with MS treated with aCD20 lacking anti-RBD IgG had the most severe defect in circulating TFH responses and more robust CD8 T cell responses. These data define the nature of the SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making and public health policy for immunosuppressed patients including those treated with aCD20.


Subject(s)
COVID-19 Vaccines/therapeutic use , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral/analysis , Antibodies, Viral/blood , Antigens, CD20/immunology , COVID-19/prevention & control , Case-Control Studies , Chlorocebus aethiops , HEK293 Cells , Humans , Immunity, Cellular , Immunity, Humoral/drug effects , Immunity, Humoral/physiology , Immunotherapy/methods , Longitudinal Studies , Multiple Sclerosis/blood , RNA, Messenger/immunology , RNA, Viral/immunology , Rituximab/pharmacology , Rituximab/therapeutic use , SARS-CoV-2/genetics , Vaccination , Vero Cells
7.
Science ; 374(6572): abm0829, 2021 Dec 03.
Article in English | MEDLINE | ID: covidwho-1467659

ABSTRACT

The durability of immune memory after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccination remains unclear. In this study, we longitudinally profiled vaccine responses in SARS-CoV-2­naïve and ­recovered individuals for 6 months after vaccination. Antibodies declined from peak levels but remained detectable in most subjects at 6 months. By contrast, mRNA vaccines generated functional memory B cells that increased from 3 to 6 months postvaccination, with the majority of these cells cross-binding the Alpha, Beta, and Delta variants. mRNA vaccination further induced antigen-specific CD4+ and CD8+ T cells, and early CD4+ T cell responses correlated with long-term humoral immunity. Recall responses to vaccination in individuals with preexisting immunity primarily increased antibody levels without substantially altering antibody decay rates. Together, these findings demonstrate robust cellular immune memory to SARS-CoV-2 and its variants for at least 6 months after mRNA vaccination.


Subject(s)
COVID-19 Vaccines/immunology , Immunologic Memory , SARS-CoV-2/genetics , SARS-CoV-2/immunology , mRNA Vaccines/immunology , Humans
8.
Immunity ; 54(9): 2133-2142.e3, 2021 09 14.
Article in English | MEDLINE | ID: covidwho-1433401

ABSTRACT

SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses on healthy SARS-CoV-2-naive and recovered individuals prior to and following mRNA prime and boost vaccination. Vaccination induced rapid antigen-specific CD4+ T cell responses in naive subjects after the first dose, whereas CD8+ T cell responses developed gradually and were variable in magnitude. Vaccine-induced Th1 and Tfh cell responses following the first dose correlated with post-boost CD8+ T cells and neutralizing antibodies, respectively. Integrated analysis revealed coordinated immune responses with distinct trajectories in SARS-CoV-2-naive and recovered individuals. Last, whereas booster vaccination improved T cell responses in SARS-CoV-2-naive subjects, the second dose had little effect in SARS-CoV-2-recovered individuals. These findings highlight the role of rapidly primed CD4+ T cells in coordinating responses to the second vaccine dose in SARS-CoV-2-naive individuals.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Th1 Cells/immunology , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , BNT162 Vaccine , Female , Humans , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Immunologic Memory , Lectins, C-Type/metabolism , Lymphocyte Activation , Male , Middle Aged , Peptides/immunology , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
9.
Sci Immunol ; 6(58)2021 04 15.
Article in English | MEDLINE | ID: covidwho-1349998

ABSTRACT

Novel mRNA vaccines for SARS-CoV-2 have been authorized for emergency use. Despite their efficacy in clinical trials, data on mRNA vaccine-induced immune responses are mostly limited to serological analyses. Here, we interrogated antibody and antigen-specific memory B cells over time in 33 SARS-CoV-2 naïve and 11 SARS-CoV-2 recovered subjects. SARS-CoV-2 naïve individuals required both vaccine doses for optimal increases in antibodies, particularly for neutralizing titers against the B.1.351 variant. Memory B cells specific for full-length spike protein and the spike receptor binding domain (RBD) were also efficiently primed by mRNA vaccination and detectable in all SARS-CoV-2 naive subjects after the second vaccine dose, though the memory B cell response declined slightly with age. In SARS-CoV-2 recovered individuals, antibody and memory B cell responses were significantly boosted after the first vaccine dose; however, there was no increase in circulating antibodies, neutralizing titers, or antigen-specific memory B cells after the second dose. This robust boosting after the first vaccine dose strongly correlated with levels of pre-existing memory B cells in recovered individuals, identifying a key role for memory B cells in mounting recall responses to SARS-CoV-2 antigens. Together, our data demonstrated robust serological and cellular priming by mRNA vaccines and revealed distinct responses based on prior SARS-CoV-2 exposure, whereby COVID-19 recovered subjects may only require a single vaccine dose to achieve peak antibody and memory B cell responses. These findings also highlight the utility of defining cellular responses in addition to serologies and may inform SARS-CoV-2 vaccine distribution in a resource-limited setting.


Subject(s)
Antibodies, Viral/immunology , B-Lymphocytes/immunology , COVID-19 Vaccines , COVID-19/immunology , SARS-CoV-2/immunology , Vaccines, Synthetic , Adult , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Female , Humans , Male , Middle Aged , RNA, Messenger , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Young Adult
10.
Cell Host Microbe ; 29(9): 1437-1453.e8, 2021 09 08.
Article in English | MEDLINE | ID: covidwho-1347535

ABSTRACT

The SARS-CoV-2 pandemic has affected more than 185 million people worldwide resulting in over 4 million deaths. To contain the pandemic, there is a continued need for safe vaccines that provide durable protection at low and scalable doses and can be deployed easily. Here, AAVCOVID-1, an adeno-associated viral (AAV), spike-gene-based vaccine candidate demonstrates potent immunogenicity in mouse and non-human primates following a single injection and confers complete protection from SARS-CoV-2 challenge in macaques. Peak neutralizing antibody titers are sustained at 1 year and complemented by functional memory T cell responses. The AAVCOVID vector has no relevant pre-existing immunity in humans and does not elicit cross-reactivity to common AAVs used in gene therapy. Vector genome persistence and expression wanes following injection. The single low-dose requirement, high-yield manufacturability, and 1-month stability for storage at room temperature may make this technology well suited to support effective immunization campaigns for emerging pathogens on a global scale.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Dependovirus/genetics , Dependovirus/metabolism , Female , Humans , Immunogenicity, Vaccine/immunology , Immunologic Memory/immunology , Macaca fascicularis , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology , Transgenes/genetics , Vaccination/methods , Viral Load/immunology
11.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1299247

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Subject(s)
COVID-19/complications , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Erythrocytes/immunology , Peptide Fragments/immunology , Respiratory Insufficiency/diagnosis , Sepsis/diagnosis , COVID-19/immunology , COVID-19/virology , Complement C3b/metabolism , Complement C4b/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Respiratory Insufficiency/immunology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Sepsis/immunology , Sepsis/metabolism , Sepsis/virology
12.
Sci Immunol ; 6(57)2021 03 02.
Article in English | MEDLINE | ID: covidwho-1115087

ABSTRACT

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8+ T cells that correlated with the use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct from one another and implicate CD8+ T cells in the clinical presentation and trajectory of MIS-C.


Subject(s)
COVID-19/immunology , Lymphocyte Activation , Systemic Inflammatory Response Syndrome/immunology , T-Lymphocytes/immunology , Adolescent , Adult , Aging/immunology , Child , Child, Preschool , Female , Flow Cytometry , Humans , Leukopenia/immunology , Male , Young Adult
13.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Article in English | MEDLINE | ID: covidwho-1071140

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Subject(s)
Alphacoronavirus/immunology , Antibodies, Viral , Betacoronavirus/immunology , COVID-19/immunology , Adolescent , Adult , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19 Serological Testing , Child , Child, Preschool , Chlorocebus aethiops , Cross Protection , Cross Reactions , Disease Susceptibility , HEK293 Cells , Humans , Infant , Infant, Newborn , Vero Cells
14.
Science ; 369(6508)2020 09 04.
Article in English | MEDLINE | ID: covidwho-981641

ABSTRACT

Coronavirus disease 2019 (COVID-19) is currently a global pandemic, but human immune responses to the virus remain poorly understood. We used high-dimensional cytometry to analyze 125 COVID-19 patients and compare them with recovered and healthy individuals. Integrated analysis of ~200 immune and ~50 clinical features revealed activation of T cell and B cell subsets in a proportion of patients. A subgroup of patients had T cell activation characteristic of acute viral infection and plasmablast responses reaching >30% of circulating B cells. However, another subgroup had lymphocyte activation comparable with that in uninfected individuals. Stable versus dynamic immunological signatures were identified and linked to trajectories of disease severity change. Our analyses identified three immunotypes associated with poor clinical trajectories versus improving health. These immunotypes may have implications for the design of therapeutics and vaccines for COVID-19.


Subject(s)
B-Lymphocytes/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Adaptive Immunity , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , B-Lymphocyte Subsets/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , Cytokines/blood , Female , Humans , Immunologic Memory , Lymphocyte Activation , Male , Middle Aged , Pandemics , Plasma Cells/immunology , SARS-CoV-2 , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Helper-Inducer/immunology , Time Factors , Young Adult
15.
medRxiv ; 2020 Oct 06.
Article in English | MEDLINE | ID: covidwho-807631

ABSTRACT

Pediatric COVID-19 following SARS-CoV-2 infection is associated with fewer hospitalizations and often milder disease than in adults. A subset of children, however, present with Multisystem Inflammatory Syndrome in Children (MIS-C) that can lead to vascular complications and shock, but rarely death. The immune features of MIS-C compared to pediatric COVID-19 or adult disease remain poorly understood. We analyzed peripheral blood immune responses in hospitalized SARS-CoV-2 infected pediatric patients (pediatric COVID-19) and patients with MIS-C. MIS-C patients had patterns of T cell-biased lymphopenia and T cell activation similar to severely ill adults, and all patients with MIS-C had SARS-CoV-2 spike-specific antibodies at admission. A distinct feature of MIS-C patients was robust activation of vascular patrolling CX3CR1+ CD8 T cells that correlated with use of vasoactive medication. Finally, whereas pediatric COVID-19 patients with acute respiratory distress syndrome (ARDS) had sustained immune activation, MIS-C patients displayed clinical improvement over time, concomitant with decreasing immune activation. Thus, non-MIS-C versus MIS-C SARS-CoV-2 associated illnesses are characterized by divergent immune signatures that are temporally distinct and implicate CD8 T cells in clinical presentation and trajectory of MIS-C.

16.
Sci Immunol ; 5(49)2020 07 15.
Article in English | MEDLINE | ID: covidwho-646575

ABSTRACT

Although critical illness has been associated with SARS-CoV-2-induced hyperinflammation, the immune correlates of severe COVID-19 remain unclear. Here, we comprehensively analyzed peripheral blood immune perturbations in 42 SARS-CoV-2 infected and recovered individuals. We identified extensive induction and activation of multiple immune lineages, including T cell activation, oligoclonal plasmablast expansion, and Fc and trafficking receptor modulation on innate lymphocytes and granulocytes, that distinguished severe COVID-19 cases from healthy donors or SARS-CoV-2-recovered or moderate severity patients. We found the neutrophil to lymphocyte ratio to be a prognostic biomarker of disease severity and organ failure. Our findings demonstrate broad innate and adaptive leukocyte perturbations that distinguish dysregulated host responses in severe SARS-CoV-2 infection and warrant therapeutic investigation.


Subject(s)
B-Lymphocyte Subsets/immunology , Betacoronavirus/immunology , Coronavirus Infections/immunology , Neutrophils/immunology , Pneumonia, Viral/immunology , T-Lymphocytes/immunology , Aged , COVID-19 , Clonal Selection, Antigen-Mediated/immunology , Coronavirus Infections/pathology , Cytokines/metabolism , Female , Humans , Immunity, Innate/immunology , Immunologic Memory/immunology , Lymphocyte Activation/immunology , Lymphocyte Count , Male , Middle Aged , Pandemics , Pneumonia, Viral/pathology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL